搜索 | 注册
现代机床杂志 2024 第一期

订阅电话:010-80335298
台湾治盛科技G-TOP 昆山雷柏士精密科技有限公司 江苏维香工具制造有限公司 山东欧诺威数控刀具有限公司 四川泰刕斯工具制造有限公司 常州埃特法斯工具有限公司 北京科勘工具制造有限公司 昆山涵博电子科技有限公司 上海工博会 泰劦斯工具制造有限公司 上海洛友精密工具有限公司 苏氏精密工具股份有限公司 诺伊数控工具 上海翔驰刀具有限公司 德州凯狮商贸有限公司 东莞市川润数控刀具有限公司
首页 » 企业动态 » 中国“智”造的典范:德国智能工厂的建设路径

中国“智”造的典范:德国智能工厂的建设路径

进入21世纪以来,信息与通信技术取得了突破性进展。特别互联网技术的迅猛发展给社会和工业带来了深远的影响,2006年美国国家基金会(NSF)科学家HelenGill提出了信息物理融合系统(Cyber-PhysicalSystem,简称CPS)概念,将网络化的世界与智能化物理世界融合起来。信息物理融合系统是集成计算、通信与控制于一体的下一代智能系统,是计算进程和物理进程的统一体。CPS包含了无处不在的环境感知、嵌入式计算、网络通信和网络控制等系统工程,使物理系统智能化具有计算、通信、精确控制、远程协作和自适应功能。德国工业4.0将CPS运用到制造和物流的技术集成,通过与物联网及服务网的融合,进而产生了创新的工厂系统--智能工厂(SmartFactory)。 
   
  在工业4.0时代,每个工厂企业都将建立“数字企业平台”,通过开放接口将虚拟环境与基础架构融为一体,从而形成生产制造模式变革为核心的网络物理融合生产系统(CPPS)。智能工厂系统完全不同于传统的工厂自动化系统。智能工厂采用面向服务的体系架构,它是人、机器与产品互联互通的一个智能网络。这一智能网络成为设计和制造智能工厂的理论基础。 

  可以看出,CPS的通信网络系统采用了工业物联网技术;生产制造系统采用CPPS信息物理融合生产系统;传统的企业监控管理级成为了采用服务互联网提供的服务的安全可靠和可信的云网络。基于嵌入式Internet技术的P2M(产品对机器通信)以公共无线网络为接入手段,为客户提供产品到机器的通信解决方案,满足客户对生产过程监控、指挥调度、远程数据采集和测量、远程诊断等方面的信息化需求。P2M不是简单的数据在产品和机器之间的传输,它是生产制造之间的一种智能化、交互式通信,即使人们没有实时发信号,机器也会根据产品的信息主动进行通信,并根据所得到的数据经过大数据分析智能化地做出选择,对相关设备发出正确的指令。新型的工业控制以传统的自动控制金字塔为基础逐步实现智能化、远程化和实时化,通过IP网络支持以及泛在移动性的P2M通信提供了更佳的承载基础。按照EdwardA.Lee教授的定义:“信息物理生产制造系统(CPPS)是计算过程和物理过程的集成系统,利用嵌入式计算机和网络对物理过程进行监测和控制,并通过反馈环实现计算过程和物理过程的相互影响。”基于CPS系统的智能工厂是一种网络型嵌入式系统,它将打破PC机时代建立的传统自动化系统的体系架构,从而全面实现分布式智能。 
   
  德国推进智能工厂动因 
   
  除了技术背景,德国政府实施智能工厂的主要原因,还是想将互联网技术、信息和通信技术集成到传统的制造业,以维持其全球市场领导地位,并为推广CPS技术和产品建立和培育新的市场,成为智能制造技术的主要供应大国。 
   
  从根本上说,德国作为世界上最重要的生产制造国家,面临着互联网时代制造领域升级转型的巨大挑战。目前IT行业对于传统制造业的大举进攻,对于传统制造领域技术开发的大量投资,使得德国政府不断提醒德国的企业家们必须抱有保持德国在制造行业领先地位的深刻危机意识。如果德国制造业不能及时进行创新性革命,总有一天Google、微软、苹果等会成为生产制造的新巨头。可以说,互联网技术发展对于产品乃至企业生命周期的影响,猛烈地冲击着德国制造强国的地位。所以德国必须通过新的创新、变革才能从制造强国提升为超级制造强国,从而保持它在机械制造领域的领先地位。而推动智能工厂和智能生产是实现这一目标的重要手段。 
   
  德国大力推进智能工厂的原因,具体而言,第一个因素是互联网时代对于传统制造业的强烈冲击。最近十多年来技术特别是IT信息通信技术的迅猛发展,已成为所有行业和应用领域的重要创新驱动器。互联网技术已对人类社会的发展带来了深刻的影响。制造业若仍按照原来的设计制造生产和规划方法运行,已远远不能适应市场、客户和技术发展的需要。如何将互联网及IT技术应用于传统工业已成为当务之急。因此,如果德国想在全球装备制造领域继续保持领头羊的地位,不仅必须继续发扬一贯专注于创新和创造的精神,而且要通过工业4.0战略的实施,将互联网技术与传统行业有机结合在一起,对传统行业进行变革以符合新的营销理念、新的市场需求和新的技术发展的要求,再度提升其全球竞争力,成为互联网时代工业制造技术的供应者和领先者,并将这种系统工程推向全世界,保持其全球生产制造行业掌门领袖的地位。 
   
  第二个因素是世界经济全球化对于产品生命周期的影响。由于互联网时代带来了世界经济的扁平化,带来了工业产业如何保持持续发展的新挑战,带来了由信息的开放性和传播的快速性造成的产品生命周期的根本性变化。所以制造工厂的设计和建造需要满足生产制造布局全球性、制造方式灵活性、产品生命周期缩短和企业发展持续性的需求。这些需求就是工业4.0战略在所有工业领域要解决的问题。而智能工厂的目的就是要产生一种新型的生产制造模式。从单纯生产产品的技术角度来讲,这种新型的生产制造模式要能适应产品生命周期的新变化。在过去十多年里,机械制造行业的专家们做了不少努力来提高生产效率,加大生产的灵活性,如机电一体化、管控一体化、CIMS、数字工厂、虚拟工厂等等,都没有很好地解决以上问题,在实践和发展中,人们慢慢认识到这些问题的解决并不是单单通过改造生产制造方式就可以实现的。这种变革需要融合产品研发、生产、市场、服务、运行及回收各阶段的动态管理。这恰恰是建设智能工厂的首要任务。 
   
  第三个因素是推动智能制造以巩固德国在制造领域的领先地位。德国在推动工业4.0这一国策时将重点放在智能工厂上,这关系到德国如何继续占领传统工业领域的制高点,打造国家制造业竞争新优势。老牌工业强国德国期望通过以智能制造为主导的第四次工业革命来实现德国的工业制造由自动化向智能化和网络化方向升级的目的,实施智能工厂和智能生产两大战略,通过不同层面的智能化变革实现全局的智能化。 
   
  德国强调第四次革命的重点是生产制造模式上的改变,这也与德国制造业在德国经济中有着举足轻重的地位分不开。德国拥有强大的设备和机床制造能力,推动智能工厂建设,可以全方位地提升德国工业界的整体实力,引发整个制造产业链(信息技术的引用、生产物流管理技术、自动化控制技术、机电一体化技术、工业科技产品的科研和开发、3D技术、复杂工业过程的管理技术、电子嵌入式系统技术等等)的颠覆性变化。同时这一项目也可以动员和吸引整个工业制造行业链上大量中小企业参与,举一纲而万目张,解一卷而众篇明,成为“全民项目”,使得中小企业都成为智能工厂生产技术的参与者、开发者、使用者和受益者,从而继续保持德国在整个产业链的领先地位。 
   
  德国智能工厂架构体系 
   
  工业4.0提倡的智能工厂是实现一种新型生产制造模式的载体。其核心是为了适应产品生命周期新的变化。它能够找到应付产品快速更新换代、产品种类多而批量少、价格竞争和成本压力、投资回报率时间缩短以及资源优化和能源效率的解决方法。其架构体系是按照RAMI4.0(工业4.0的参考架构模型)来设计的。 
   
  RAMI4.0提出了从四个侧面来设计智能工厂,即生产制造流程、生产制造设备、管理软件和工程工艺(生产工艺、制造工艺、产品开发工艺及流程工艺)。同时RAMI4.0又将这四个侧面归纳为三个维度,即产业制造链、产品周期链和企业管理链,形成一个三维的工业4.0参考架构模型。按照这个模型,我们用生产制造周期、自适应生产制造自动化系统和互联网为导向的工厂管理系统三方面来构造智能工厂的基本特性及方法。 
   
  实现智能工厂要分多步进行。 
   
  智能工厂要掌握产品生命周期,制订灵活多样的生产制造周期。实际上,产品从诞生到消失的生命周期在市场上销售量需求有一定的规律。它要经历研发期、试用期、发展期、成熟期、饱和期到退出期。在不同的时期中市场对于产品的数量要求也是不同的。如在研发期、试用期所需要的产品数量是有限的,发展期、成熟期、饱和期所需要的产品数量由市场推广的力度及市场合理的定位来确定预测的范围,而在退出期则需要按回报率、更新换代的速度和开发新产品的投入力度来规划产品不同的生产数量和功能。 
   
  S型曲线是典型的产品生命周期曲线,产品经过培育期、成长期、成熟期、衰退期,直至结束产品生命。这条S型曲线代表了以传统的方式来思考一个产品生命周期的各个阶段与企业在此产品上的收入(效益)的关系。
   
  而在产品生命周期的管理下,产品生命周期曲线可以被重新塑造,在产品生命周期的各个阶段都会产生相应的作用,从总体上为企业带来巨大的效益。同时极大地影响不同阶段对于产品的需求数量,当然对于生产制造的规模、回报率和研发周期的制定起了决定性的作用。 
   
  这是产品管理的基本原则,所不同的是在过去的年代里,整个的产品生命周期比较长,一般可以按8年到10年计算,所以一般研发期、试用期的资本投入可以忽略不计。以开发机械结构产品为例,初期的研发费用、模具费用甚至加工机械设备的费用可以分摊在整个产品的数量上。比较长的产品生命周期产生巨大的销售量保证了初期投入及时地获得回报。而如今随着技术的快速发展和产业更新换代的加速,产品生命周期大大缩短。这种现象首先出现在民用产品上,使用周期从过去的三四年缩短到一二年,甚至更短。这种趋势也影响了工业产品的生命周期的长短。 
   
  产品生命周期短、产品数量少同时数量要求的突变性,必然需要一种灵活多样的生产制造模式来快速响应这些变化。实现智能工厂的第一步就是要建立这样的具有自适应功能的生产制造模式。目前德国推动智能工厂的一项重要任务就是设计和规范按照市场对产品需求的不同时间段而实现不同生产方式的灵活多样的生产制造发展周期。 
   
  智能工厂要满足产品制造周期的自适应生产制造模式。多工作方法的生产制造模式是智能工厂满足客户和产品特殊需求的基础,将客户和市场的需求及时地与生产制造模式有机地整合在一起,及时调整生产的方法来平衡成本与投资,降低成本,提高响应速度。提高产品的竞争能力是智能工厂的基本设计思想。要实现人工、半自动和全自动三位一体的生产制造模式,我们首先要考虑到这种混合生产制造模式的实施成本问题,生产方式切换时产生的停机时间问题,调试维护安装操作难度提高的问题,运行人员的技术水平培养问题,系统规划预算的复杂性问题等等。针对这些问题,必须解决:产品数量的响应性;生产规划的长期性;生产工艺的稳定性;技术发展的连续性;制造成本的竞争性;员工创新的主导性。这六个性能构成了智能工厂生产制造模型的特征。 
   
  智能工厂必须具备将人工、半自动和全自动三位一体的适应性生产制造模式的控制系统的基本方法人工、半自动和全自动三位一体的适应性生产制造模式是构成生产价值链轴/生产管理轴的集合。针对产品的高柔性化生产和客户定制的发展趋势,建立高度灵活的个性化和数字化的产品与服务的生产模式。 
   
  在这种模式中,由于引入了各种新的技术特别是互联网技术,产生以生产制造为导向的交叉领域和创新理念,创造出新价值,传统的产业链将被重组。适应性的生产制造模式针对产品制造周期自适应生产制造模式提出了基本的设计规范,核心是将IT信息技术、工业以太网络技术与工业自动化技术有机结合起来。对所需的信息和应用信息要求数字化;保证产品在不同时刻或阶段需求量不同,对于生产峰值有及时的应对能力;应用互联网及IT技术将生产制造、生产工艺、生产控制和生产管理结合在一起;采用分散智能化装备组件使得生产模式功能扩展得更加方便;采用网络物理系统的概念达到数字工厂与实际对象的一致性。当然成本的优化、操作的方便性等等因素都在设计的大纲中体现出来。 
   
  根据这些现实及未来发生的问题,研究智能工厂的路径图得以提出。智能工厂是信息化技术发展的产品,是在数字化工厂的基础上,利用物联网的技术和设备监控技术加强信息管理和服务。智能工厂规划、设计和运行专家们不仅要了解自己的产品即生产装备及技术,同时也应该清楚掌握产销流程、即时正确地采集生产线数据,以及合理编排生产计划与生产进度。为了提高生产过程的可控性、减少生产线上人工干预、在设计的过程中必须将生产管理、生产流程及生产效率统一于生产制造模式中,从而构建一个高效节能、绿色环保、环境舒适的现代化工厂。它主要采用的技术核心如下:A)采用数字工厂/虚拟工厂的技术;B)智能分散型机电控制一体化的功能模块;C)IT技术、互联网技术、应用实现三位一体化的适应性生产制造系统。 
   
  智能工厂还须具备融合互联网技术的企业管理系统。为了实现“工业4.0”概念的智能工厂,在注重新的生产线高度自动化的同时,必须首先在制造的主要环节实现信息化控制与集成,以支撑生产过程管理与监控以及制造执行环节的信息主动获取和集成。为此,智能工厂必须以生产数据和控制数据的主动获取、应用和集成为主线,设计出智能制造过程管理与控制软件子系统(以下简称子系统),主要业务模块总体框架。 
   
  该子系统主要分为三个层面:信息集成与服务层、智能制造车间管理层以及设备层。在智能工厂的企业管理层必须与互联网相结合。整个软件框架体系中,顶层信息集成与服务层通过云服务与其他工厂进行数据交互,实现制造服务化;生产制造管理层作为制造执行控制功能,对制造过程进行控制与数据分析,主要包括制造执行控制模块、库存与物流控制模块、多源过程数据获取与分析模块、设备通讯模块等关键业务功能以及系统基础支撑模块。各层间通过数据服务中心进行数据交互。智能工厂的IT设施建立在云计算网络基础上,云计算的本质是一种基于互联网的服务模式,它类似于远程数据中心。控制室可以理解为私有云,考虑到控制的可靠性要求非常高,为CPPS信息物理融合生产系统提供服务的Apps平台建立在工厂企业的私有云上。但是一些营运和生产管理,例如PLM、SCM、CRM、QMS、ERP、以及MES的一些功能可以通过

来源:网络投稿 报道:于小通
产业热点 政策解读 展会报道
  1. 聚势启新 共创未来 ——2025重庆市首台(套)重大技术装备新产品发布会隆重举行
  2. 蔡司转台升级方案助力企业突破测量瓶颈,降本增效超预期
  3. 切削刀具正从产品提供走向价值服务
  4. 新能源汽车结构变革与配套机床市场的需求分析
  5. 从上海模具展看数控切削与特种加工的博弈
  6. CIMT 2025:孚尔默创新产品矩阵惊艳首秀 展现“工具全工艺解决方案”硬实力
  7. 汇聚动能 向新而行 ——肯纳金属创新产品媒体发布会在京举办
  8. 西门子第五代SINUMERIK 828D重磅发布, 加速中端市场数字化低碳化转型
  9. 友嘉集团亮相CIMT2025 诠释智能制造新典范
  10. 推进本地化生产,达诺巴特集团升级中国服务
  1. 从CIMT2025看工业机器人技术发展及未来展望
  2. 五轴加工技术与装备的发展现状及展望
  3. 人形机器人市场迎来爆发 超精密机床成核心赛道
  4. 2025年一季度机床工具行业经济运行情况
  5. CCMT2024刀具展品述评
  6. 强国复兴有我
  7. 中国装备 装备中国 走向世界
  8. 国家最新政策,国产工业软件必将崛起!
  9. AI方兴未艾,国内数控系统能否借力开启逆袭之路?
  10. 国家推动实施设备更新行动 机床行业迎利好
  1. 2025(第十一届)航空材料与制造工艺国际论坛
  2. 2025(第四届)新能源航空国际论坛
  3. 2025(第十三届)中国航空推进技术论坛
  4. CMES华机展|天津国际机床展
  5. 2026第47届无锡太湖国际机床及智能工业装备产业博览会
江苏开璇智能科技有限公司
广东钶锐锶数控技术有限公司
全鑫精密工业股份有限公司
广东丞洋智能设备有限公司
深圳市金汇丰精密机械有限公司
迈萃斯精密股份有限公司
东莞诺金精密机械有限公司
凯柏精密机械(嘉兴)有限公司
东莞市盛鸣鸿精密机械有限公司
台中精密機械有限公司
正代(廣東)機械科技有限公司
惠州市德瑞科机械有限公司
安微力成智能装备股份有限公司
江苏德湾数控机床科技有限公司
常州钜瑞工具有限公司
广州台茂精密机械有限公司
宁波市凯博数控机械有限公司
上海精霸数控机床有限公司
京ICP备14047549号-1 Copyright©2001-2014 mmtol.com.